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Investigations of flow and processes of heat and mass exchange of a mu!tielement plasma 
with confining surfaces are required in the construction of prospective power plants and 
other engineering devices [i]. The experimental study of heat and mass change in these de- 
vices is difficult, so one resorts to numerical modeling of the motion of a multicomponent, 
partially ionized plasma in the approximation of local thermodynamic equilibrium (LTE) on 
the basis of a certain system of equations (see, e.g., [2]) with assigned boundary and ini- 

tial conditions. The range of parameters in which one must assign the thermophysical proper- 
ties of a substance for numerical modeling (p ~ 10-i-103 MPa, T ~ I03-I05~ includes the im- 

portant and inadequately studied case of a plasma with strong Coulomb interaction. A syste- 

matic description of the properties of such a plasma is impossible owing to the strong inter- 
particle interaction, so that the problem arose of constructing theoretical models based, in 
particular, on the known experimental data. 

Kucherenko and Pavlov [3, 4] formulated a model approach to the calculation of the kinet- 
ic coefficients of a nonideal plasma: the viscosity coefficients { and n, the transport ther- 
mal conductivity %', and the multicomponent coefficients of diffusion Dik and thermodiffu- 
sion D t. For this purpose it is proposed to use the system of classic kinetic equations, the 
collision integrals of which are defined in the Boltzmann form with allowance for the elemen- 
taryprocesses important in a nonideal plasma, the qualitative properties of its composition, 
and data on the kinetic coefficients of nonideal classic Coulomb systems. Such an approach 

allows us to separate the contributions to the kinetic coefficients due to the concrete com- 
position of the plasma and to the strong Coulomb interaction in it, i.e., the non-Coulomb and 

t 
Coulomb effects. In the transition from Dik and D i to the effective transfer coefficients 
(ETC), through which the mass fluxes of chemical elements Ja (including the electric current 
Je) and the heat flux Jq are expressed, we must, according to [3, 4], take into account the 
nonideality in the thermodynamic forces. 

The above scheme of calculation of the ETC is rather complicated. Therefore, as a con- 
trol on the numerical values of the ETC (%, D, ><' > 0) it is necessary to use general restric- 
tions on the nonlinear nondiagonal ETC matrix describing the transfer of energy and mass 
(charge) in a multielement plasma in the LTE approximation. The properties of the ETC ma- 
trix are also important when the latter is used in problems of high-temperature gasdynamics. 

The elements of the ETC matrix are connected with the coefficients to the leading derivatives 
(but do not coincide with them) in the system of equations of diffusion of the chemical ele- 
ments and energy. Obviously, the character of the solutions of the system of equations of 
diffusion and energy depend on the properties of the matrix coefficients to the leading de- 
rivatives in this system. We shall investigate the matrix of coefficients to the leading 
derivatives in the system of equations of diffusion of chemical elements and energy,, as well 

as the ETC matrix, starting from the equations of thermodynamics of irreversible processes, 
formulated relative to the chemical potentials of the elements, and from the conditions of 
thermodynamic stability. 

The equations of diffusion of the chemical elements and energy, under the condition 

that E, H = 0, p = const, and v = 0 (emission is not taken into account), have the form [2] 

9dq/dt  : - -d iv  J ~ - ? c a ,  l ~ a ~ N ~ - -  1, ,od}~,'dt : - -d iv  Jq i ~t~, (1) 

where 0 is the density; ~ and h are sources; h is the specific enthalpy of the plasma; 

Ca = ~'UiaCitna/Ini; Ci : Pi Oh; Oi : milzl; n i and m i are the concentration and mass of component 

i; N is the number of components in the plasma; ui~ is the number of nuclei of element ~ in 
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component i; m a is the mass of element a; N a is the number of chemical elements forming the 
plasma; Ja and Jq have the form 

N a - - 1  ~--i 

J ~ =  ~ D ~ V c ~ + D ~ Y T ,  a q = - - ( s 1 6 3  V T +  ~ s ( 2 )  
I , = l  a = l  

where Dab and D~ are the effective coefficients of diffusion and thermodiffusion; ~t and ~a 
are the effective coefficient of thermal conductivity and the effective diffusional thermal 
coefficient. Since h = h (p, T, cl...CNa_ ~) and Ja and Jq are assigned in the form (2), we 
write (I) in the matrix form 
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where Cp = ($h/$T)p,{ca}; Cci = (~h/~Ci)p,T,ca#c i, T6, I > 0 are normalization coefficients; 

the first matrix in the exoression for a(u) [we designate it as b-~(u)] is determined by the 
thermodynamic properties of the plasma and the second [a'(u)] is the ETC matrix; the terms to 
the lowest derivatives are omitted here. We note that a(u) is not a normal matrix, i.e., 
a(u)~(u) # ~(u)a(u); thus, a(u) is not made diagonal through a unitary transformation [5]. 
Moreover, the matrix a(u) is essentially nonlinear, since D~(p, T; c a = 0.i) = 0. In the 
investigation of solutions of (3) with definite boundary and initial conditions (see, e.g., 
[6-8]) the matrix a(u) has traditionally been assumed to be parabolic (i.e., the eigenvalues 
of the matrix must have positive real parts). This condition guarantees that the solutions 
of (3) are continuous and positive [8]. Let us investigate the parabolic nature of the ma- 
trices a'(u) and a(u). We express a'(u) through the phenomenologic kinetic coefficients and 
thermodynamic derivatives, using the formulation of the entropy production ~ relative to the 
chemical potentials of the elements. In this case we write s in the form (see [2]) 

N a -- 1 

�9 I , t ~ J~Vr(t,~--b(~),  (4) s - -  - -  ~ J q V T  T z_~ 
Na a =1 

where J;=ffq-- Z s ; Ua (De) and h a (h e) are the chemical potentials and specific enthalpies 
a=l Na_t 

o f  t h e  c h e m i c a l  e l e m e n t s  ( s p a c e  c h a r g e ) ,  r e s p e c t i v e l y ;  h =  ~ cah~; ~=(OE/Oca)p,s,%r h a = ~a + 

Tsa; s a = --(3F/3T)p,{Ca}; F = E -- Ts, E is the specific internal energy of the plasma. By the 

Curie principle 

N a - -  1 

VT Tt X aabVT (~tb-- ~te), 
Ja --~ - -  ~ T2 

b=l 
N a - 1  

, VT t X {ZQaVT (~ta - -  ~Le) Jq ~ - -  O~QQ Tz T 
b = l  

(5) 

(aij are phenomenological kinetic coefficients). To write Ja and Jq in the form (2), i.e., 
to express the ETC through ~ij, we use the dependence ~a = Da(P, T, {Ca}) and the connec- 

! 

tion between Jq and Jq, and then 

N a - - 1  

I Z z D t aaQ Dab T O~alUb, a Ta , 
z=l ( 6 )  

(ZQb . b ~ t  

3 2 0  



Here ~b [O(~a-- pe)/OCb]~,T,Ca~Cb; (~Qb/T) b K' a= ~a -~- a- We note that ;t does not coincide with h ~, since Jq 

is written through the plasma components in~the definition of h t. In exactly the same way 
~QQ/T 2 ~ I # l', but, obviously h' -- I t = ~ -- ~t and ~ = I' + % R > 0, where l R is the so- 
called "chemical" thermal conductivity of the plasma [2]. The matrix form of Eqs. (61), i.e., 
the expressions for the ETC, is (with the opposite sign) 

1 
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The matrix inside the brackets is parabolic, since it is the product of two positive-definite 
matrices ~ and ~. Thematrix--D, which is obtained from the matrix a'(u) without the last row 
and last column, is also parabolic and determines the matrix to the leading derivatives in the 
system of equations of diffusion of the chemical elements (without baro- and thermodiffusion) 
[9]. The matrix a'(u) given by expression (7) is not parabolic, generally speaking. 

We rewrite a(u) in a form more convenient than (3): 

I ~ ~ l g (~) 
1( h -  h~); (G - h~);~ r 

(8) 

The first matrix on the right side of (8) is diagonal in the "ideal" case, when (h a --h e ) 
does not depend on {Ca}. Since the matrix inside tile brackets in (7) is parabolic, in the 
"ideal" case a(u) is also parabolic, while in the "nonideal" case [(ha--he) depends on {Ca}] 
a(u) is nonparabolic, generally speaking. As an example, let us consider the eigenvalues of 
a(u) for a two-element medium. In this case the matrix to the leading derivatives in the sys- 
tem (3) and its eigenvalues are 

t 
f -- Daa/p -- TsDwp 

- - +  
\pT~c~ pTsc p pTfc  p pT6cp 

Dc~a ccDla ~, __ %t 
~1,2 = - - - ~ -  q- ~ q- 29c------ ~ -+- (9) 

~ <  d2 ~ ~ -+-'--~-__ + 4 ((ha-- h~)c' cDht + ~) + 4 ~ (-- c~D~ + ~a), 

where --d is twice the expression in front of the square root in the equation for %~ 2. Using 
(6) it is easy to show that the sign of d is not definite in the "nonideal" case, w~ile d < 0 
in the "ideal" case. The expression inside the square root is 

, t t Daa ((ha - -  he)r cDa + ~)  + Da (--  ccDaa + %a) = Da~  + 

+ D~ ( - -  (h~ - -  he) Daa - -  %a' + (ha - -  he) Daa) = Da~'~ - -  D a l a i  ' < 0 

and the properties of the matrix a(u) in (9) are determined mainly by the sign of d. 

Thus, we investigated the properties of the nonlinear and nondiagonal matrix to the lead- 
ing derivatives in the system of equations of diffusion and energy for a multielement plasma 
in an ideal multielement plasma. In a nonideal multielement plasma a(u) is nonparabolic, 
generally speaking, and one must make a combined consistent calculation of the transfer and 
thermodynamic characteristics to determine the properties of the matrix to the leading deriva- 
tives, i.e., the sign of the expression --Daa/2P + ccD~/2pc p + (l' -- %t)/20c p in (9), for ex- 
ample. One must also clarify the gasdynamic consequences of the possible nonparabolic na- 
ture of a(u). 
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SUPERHEATED-IONIZATION INSTABILITY OF AN EXTERNALLY MAINTAINED DISCHARGE 

N. M. Maslennikov UDC 537.525 

A large number of papers have been devoted to instabilities of an externally maintained 
discharge, which is quite proper, since they limit the maximum current and voltage on the dis- 
charge gap. Instabilities are initiated by processes both in the cathode region and in the 
volume of the discharge gap. The experimental results presented in [1-3] can serve as an 
example of the latter case. Typical current oscillograms illustrating the development of 
instability in nitrogen in a pulsed regime are presented in Fig. i, based on data of these 
papers. The higher the voltage U on the discharge gap, the greater the current density j of 
the discharge and the smaller the time �9 of development of instability. The interpretation 
of these experiments has undergone considerable changes in recent years. The authors of [i- 
3] initially eliminated the possibility of gas heating during the action of the voltage pulse, 
since it was assumed that the Joule energy released in the volume of the discharge gap goes 
almost entirely into the excitation of vibrational degrees of freedom of nitrogen molecules, 
while the observed instability was explained by step-by-step ionization. After the publica- 
tion of [4, 5], it was recognized in [6] that a certain fraction of the Joule energy is in- 

deed expended on heating of the nitrogen. 

The authors of [7] also came to the conclusion that under the experimental conditions 
of [I] instability can develop only through step-by-step ionization, and the calculated and 
measured times of development of instability are close for E/N > 3.5"10 -16 V'cm 2. The con- 
siderable discrepancies at lower values of the ratio E/N were explained by neglect of the 

field nonuniformity. 
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Fig. i 
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